The use of neural networks as a tool for predicting congenital facial cleft and the introduction of the developed model into the educational process for students of medical universities of the Faculty of Dentistry
DOI:
https://doi.org/10.25726/v0077-0284-6922-yKeywords:
cleft lip and palate, orofacial defect, machine learning, cleft prediction, pre-birth prediction, eep neural networkAbstract
Proposed model for cleft prediction using deep neural network was considered in this article. Machine learning-based solutions create valuable decisions both for developed and developing countries with the aim for prediction the volume of highly specialized medical care for patients with facial malformations according to epidemiological situation, racial and ethnic factors, population genetic features, epigenetic factors and other significant characteristics.
References
Deep learning a boon for biophotonics? / P. Pradhan, S. Guo, O. Ryabchykov et al. // J Biophotonics. – 2020. – № 13. – P. 1–24.
Deep Learning in Medical Image Analysis / H. P. Chan, R. K. Samala, L. M. Hadjiiski et al. // Adv Exp Med Biol. – 2020. – № 121. – P. 3–21.
Deep learning in spiking neural networks / C. Spoldi, L. Castellani, C. Pipolo et al. // A. Tavanaei, M. Ghodrati, S. Reza et al. // Neural Netw. – 2019. – № 111. – P. 47–63.
Isolated olfactory cleft involvement in SARS-CoV-2 infection: prevalence and clinical correlates / C. Spoldi, L. Castellani, C. Pipolo et al. // Eur Arch Otorhinolaryngol. – 2021. – № 278. – P. 557–560.
Kriegeskorte, N. Neural network models and deep learning / N. Kriegeskorte, T. Golan // Curr Biol. – 2019. – № 29. – P. 231–236.
Maternal biomarkers of methylation status and non-syndromic orofacial cleft risk: a meta- analysis / R. Blanco, A. Colombo, R. Pardo et al. // Int J Oral Maxillofac Surg. – 2016. – № 45. – P. 1323–1332.
Use of antiepileptic medications in pregnancy in relation to risks of birth defects / М. М. Werler, K. A. Ahrens, J. L. Bosco et al. // Ann Epidemiol. – 2011. – № 21. – P. 842–850.