Teaching students to develop GIS applications
DOI:
https://doi.org/10.25726/w0687-1762-2053-oKeywords:
user interface, SwiftUI, MapKit, GIS, spatial representationAbstract
Mobile GIS applications are becoming more and more complex, as the tasks they solve are. A typical GIS application should include elements such as artificial intelligence, pattern recognition or machine learning, relational or non-relational databases, spatial representation and reasoning. Companies such as Google and Apple are developing new technologies related to the development of mobile applications. For example, Apple introduced a new technology called SwiftUI at WWDC2019 and WWDC2020 in 2019, which aims to reduce the complexity of mobile application development and allows integrating technologies such as Mapkit to represent spatial information. This paper presents studies of the advantages of using SwiftUI to integrate Mapkit as a basis for spatial representation to facilitate the development of mobile GIS applications. Information technologies have a wide variety of applications in various fields of science. For example, artificial intelligence and machine learning are technologies that are beginning to be widely used in mobile applications. The purpose of this work is to investigate ways to develop mobile applications that can perform the presentation and calculation of information in accordance with the requirements.
References
Зарипова Г., Рузиева К. Использование интерактивных методов в процессе обучения студентов компьютерным технологиям // Проблемы педагогики. 2018. № 7 (39). С. 5-8.
Ильин М.С., Тарасов В.С. Анализ средств по ускорению вычислений для устройств на платформе android // Сборник студенческих научных работ факультета компьютерных наук ВГУ. 2017. С. 123-130.
Исмоилова М.Н., Имомова Ш.М. Интерполяция функции // Вестник науки и образования. 2020. № 3(81). Часть 3. С. 5.
Парыгин Д.С. Применение рекомендательных технологий в системах с пространственной информацией // Прикаспийский журнал: управление и высокие технологии. 2019. №1. С. 96-109.
Пономарев А.В. Решение задач линейного программирования с использованием GNU Octave, GLPK и Python. https://cais. iias. spb. su/ponomarev/LP_tutorial.pdf
Сербин Д.В., Петров А.А. Машинное обучение в мобильной разработке // Цифровизация экономики: направления, методы, инструменты. 2020. С. 64-66.
Шадрина Н.И., Берман Н.Д., Решение задач оптимизации в Microsoft Excel 2010: учеб. пособие. Хабаровск: Изд-во Тихоокеан. гос. ун-та, 2016. 101с.
Alpaydin E. Machine learning. MIT Press, 2021.
Apple WWDC 2020. https://developer.apple.com/videos/play/wwdc2020/10031.
Dix, A.: Human–computer interaction, foundations and new paradigms. J. Vis. Lang. Comput. 42, 122–134 (2017)
Heer, J., Bostock, M.: Declarative language design for interactive visualization. IEEE Trans. Visual Comput. Graphics 16(6), 1149–1156 (2010)
Inie, N., Dalsgaard, P.: How interaction designers use tools to manage ideas. ACM Trans. Comput.-Hum. Interact. (TOCHI) 27(2), 1–26 (2020)
Mcgill, M., Kehoe, A., Freeman, E., Brewster, S.: Expanding the bounds of seated virtual workspaces. ACM Trans. Comput.-Hum. Interact. (TOCHI) 27(3), 1–40 (2020)
Microsoft 2020. Xamarin.Forms .NET. https://dotnet.microsoft.com/apps/xamarin/xamarinforms.
Tanenbaum, A., Wetheall, D.: Computer Networks. Pearson (2013)